28 VOLT INPUT – 2.7 AMP NOT RECOMMENDED FOR NEW DESIGN

FEATURES

- · 60 dB attenuation typical at 500 kHz
- Compliant to MIL-STD-461C CE-03
- Compatible with MIL-STD-704 A-E
 28 volt power bus ¹
- Fully qualified to Class H
- -55°C to +125°C operation
- · Nominal 28 volt input
- 0 to 50 volts operation ¹
- · 2.7 amps throughput current

MODELS	CURRENT (A)		
FMC-461NT ¹	2.7		
FMC-461 ¹	2.7		

DESCRIPTION

The Interpoint® FMC-461 Series[™] of EMI filters offers up to 2.7 amps of throughput current in a low profile package. The FMC-461 filters are manufactured in our fully certified and qualified MIL-PRF-38534 Class H production facility and packaged in hermetically sealed steel cases. They are ideal for use in programs requiring high reliability and small size. They have been specifically designed to reduce the input line reflected ripple current of Interpoint MFK, MFX, MWR, MHV and MHF+ Series of DC-DC converters including their space counterparts. The filter can be used to filter combinations of the lower power converters up to two MTR Series converters and a single MFL Series converters up to the rated current of the filter. They are intended for use in applications which have high frequency switch-mode DC-DC converters and which must meet MIL-STD-461C levels of conducted noise.

The FMC-461 filters are built using thick-film hybrid technology and is hermetically sealed in metal packages for military, aerospace, and other high-reliability applications. The filters use only ceramic capacitors for reliable high temperature operation.

The filters are offered with standard screening, "ES" screening, or fully compliant to "883" MIL-PRF-38534 Class H screening. A DLA Drawing is available, see Table 3.

MIL-STD NOISE MANAGEMENT

When used in conjunction with Interpoint converters, the FMC-461 and FMC-461NT filters reduce input ripple current within the frequency band of 100 kHz to 50 MHz. This gives the filter/converter combination a performance which exceeds the CE03 test of MIL-STD-461C. Typical FMC-461 filter frequency response and output impedance behavior are shown in Figures 4 and 5. CE03 performance of a typical converter with the FMC-461 filter connected is shown in Figure 3.

TRANSIENT SUPPRESSION - FMC-461 ONLY

The FMC-461¹ filter also features an optional fast-reacting (1 pico second) transient suppressor (transorb SMCG40A) which begins clamping the input voltage at approximately 47 volts, protecting the DC-DC converter from damage from induced line transients.

The FMC-461NT ¹ does not have a transorb option.

OPERATING TEMPERATURE

The filters are rated to operate, with no degradation of performance, over the temperature range of -55°C to +125°C (as measured at the baseplate). Above +125°C, current must be derated as specified in Table 5.

INSERTION LOSS

Low dc resistance design results in a maximum power loss of less than 2% with typical input voltage.

LAYOUT REQUIREMENT

The case pin, and ideally the case, should be tied to the case of the converter through a low-inductance connection.

Note 1.

a) The FMC-461 has a transorb and will not protect against transients as defined in MIL-STD-704A Figures 8 and 9, curves 1 and 2. It will begin clamping the voltage at approximately 47 volts. Operation beyond the defined specifications may damage the transorb.

b) The FMC-461NT does not have a transorb and does not clamp the input voltage. Transients of higher than 40 volts will not harm the filter but will be passed to the converter.

28 VOLT INPUT – 2.7 AMP

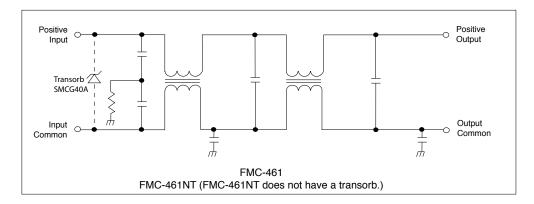
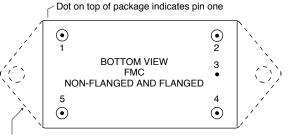


FIGURE 1: SCHEMATIC – TYPICAL VALUES FOR FMC-461

The case ground connection between the filter and the converter should be as low an impedance as possible to minimize EMI. Direct contact of baseplate to chassis ground provides the lowest impedance.

An external RC damping network may need to be added across the output of the FMC-461 to lower it's impedance in comparison to the impedance of the converters it will be paired with. See our EMI Conducted Interference application note or contact our Application Engineers at powerapps@crane-eg.com or call +1 425.882.3100 option 7.


Pin Single Output				
Positive Input				
Positive Output				
Case Ground				
Output Common				
Input Common				

 PINS NOT IN USE

 Case Ground Pin 3
 Connect case ground for optimum filtering

TABLE 2: PINS NOT IN USE

TABLE 1: PIN OUT

Dotted line outlines flanged package option.

See Figure 7 and Figure 8 for dimensions.

FIGURE 2: PIN OUT

28 VOLT INPUT – 2.7 AMP

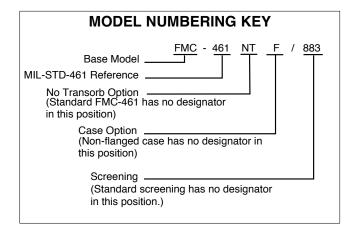


FIGURE 3: MODEL NUMBERING KEY

DLA NUMBERS					
DLA DRAWING (5915) FMC-461 SIMILAR PAR					
94010-01HXC	FMC-461/883				
94010-01HZC FMC-461F/883					
94010-02HXC ¹	FMC-461NT/883 ¹				
94010-02HZC ¹ FMC-461NTF/883 ¹					
1. Models with "NT" have no transorb (-02 in the DLA numbers). For exact specifications for a DLA product, refer to the DLA drawing. DLA drawings can be downloaded from: https://landandmaritimeapps.dla.mil/programs/smcr					

TABLE 3: DLA CROSS REFERENCE

MODEL NUMBER OPTIONS ¹ To determine the model number enter one option from each category in the form below.							
CATEGORY	Base Model and Input Voltage	Transorb ²	Case Option ³	Screening ⁴			
OPTIONS	FMC-461	(with transorb, leave blank) NT (no transorb)	(standard, leave blank) F (Flanged)	(standard, leave blank) ES 883			
FILL IN FOR MODEL # ⁵	FMC-461			,			

Notes

1. See Figure 3, above, for an example of a model number.

2. The FMC-461 has a transorb for transient suppression (see page 1). The FMC-461NT does not have a transorb.

3. Case Options: For the standard case, Figure 7, leave the case option blank. For the flanged case option, Figure 8, insert the letter F in the Case Option position.

4. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Table 7 and Table 8.

5. If ordering by model number add a "-Q" to request solder dipped leads (FMC-461/883-Q). Available only for Class H.

TABLE 4: MODEL NUMBER OPTIONS

28 VOLT INPUT - 2.7 AMP

MODEL		FMC-461			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 seconds max.	—	—	300	°C
STORAGE TEMPERATURE ¹		-65	—	+150	°C
CASE OPERATING	FULL POWER	-55	—	+125	°C
TEMPERATURE ¹	ABSOLUTE	-55	_	+135	Ũ
DERATE I ² (R _{DC}) ¹	LINEARLY	From 100% at 125°C to 0% at 135°C		% at 135°C	
ISOLATION, ANY PIN TO CASE	500 VDC AT 25°C	100	_	_	Megohms
EXCEPT CASE PIN					linegonino

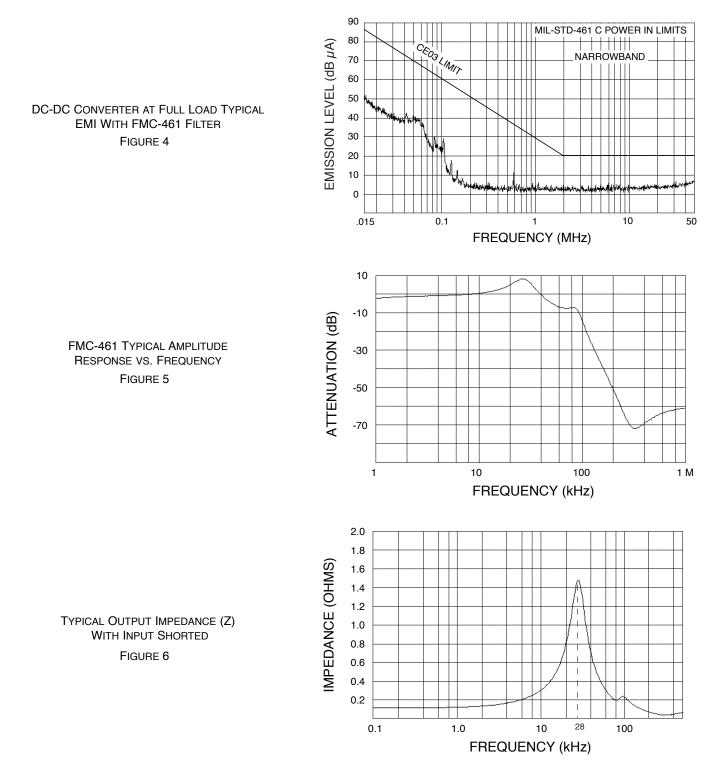
TABLE 5: OPERATING CONDITIONS: 28 VIN, UNLESS OTHERWISE SPECIFIED.

TABLE 6: ELECTRICAL CHARACTERISTICS: -55°C TO +125°C CASE, 28 VIN, UNLESS OTHERWISE SPECIFIED.

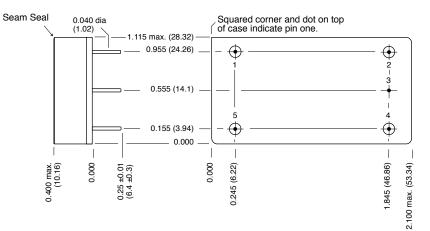
MODEL		FMC-461			FMC-461NT			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT VOLTAGE ^{1, 2}	CONTINUOUS	0	28	40	0	28	50	V
	TRANSIENT 50 ms	_	47	—	_	_	80	, v
INPUT CLAMPING VOLTAGE ²	T _C = -55°C	40.8	45.1	49.4	_	-	—	
	$T_{\rm C} = 25^{\circ}{\rm C}$	44.7	47.0	49.4	—	—	-	V
	T _C = 125°C	44.7	49.5	54.2	—	—	—	
NOISE REJECTION	500 kHz	55	—	—	55	-	-	
DIFFERENTIAL NOISE	1 MHz	60	—	—	60	—	-	dB
	5 MHz	60	—	—	60	—	—	
NOISE REJECTION	2 MHz	40	—	—	40	-	-	dB
COMMON MODE ¹	50 MHz	50	—	—	50	—	-	
DC RESISTANCE (R _{DC})	$T_{\rm C} = 25^{\circ}{\rm C}$	—	—	0.2	—	—	0.2	Ω
CAPACITANCE 25°C	ANY PIN TO CASE	_	_	48,000	_	_	48,000	pF
	EXCEPT CASE PIN			.0,000			10,000	P.
OUTPUT VOLTAGE ^{1, 3}	STEADY STATE	$V_{OUT} = V_{IN} - I_{IN} (R_{DC})$		$V_{OUT} = V_{IN} - I_{IN} (R_{DC})$		V		
OUTPUT CURRENT ^{1,}	RIPPLE	_	_	1.0	_	_	1.0	A rms
	STEADY STATE	_	_	2.7	_	_	2.7	A
POWER DISSIPATION ¹	MAXIMUM CURRENT	-	_	1.5	-	-	1.5	W

Notes Table 5 and Table 6

1. Guaranteed by characterization test and/or analysis. Not a production test.


2. Transients:

a) The FMC-461 has a transorb and will not protect against transients as defined in MIL-STD-704A Figures 8 and 9, curves 1 and 2. Operation beyond the defined specifications may damage the transorb. It will begin to clamp the voltage at approximately 47 volts. b) The FMC-461NT does not have a transorb and does not clamp the input voltage. Transients of higher than 40 volts will not harm the filter but


will be passed to the converter. 3. Typical applications result in V_{OUT} within 2% of V_{IN} .

28 VOLT INPUT – 2.7 AMP

TYPICAL PERFORMANCE PLOTS: 25°C CASE, UNLESS OTHERWISE SPECIFIED. FOR REFERENCE ONLY, NOT GUARANTEED SPECIFICATIONS.

28 VOLT INPUT – 2.7 AMP

BOTTOM VIEW CASE H1

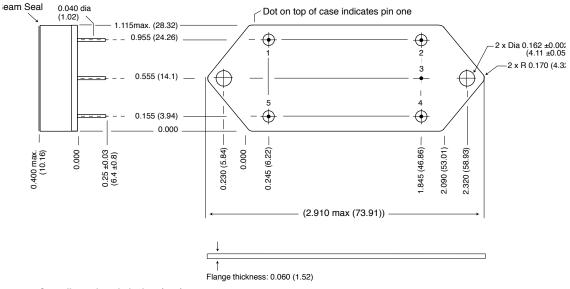
Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials


Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold, ceramic seal
	Seal hole 0.120 ±0.002 (3.05 ± 0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 7: CASE H1

28 VOLT INPUT – 2.7 AMP

Flanged cases: Designator "F" required in Case Option position of model number.

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

 Header
 Cold Rolled Steel/Nickel/Gold

 Cover
 Kovar/Nickel

 Pins
 #52 alloy/Gold, ceramic seal.

 Seal Hole: 0.120 ±0.002 (3.05 ±0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 8: CASE K2

28 VOLT INPUT – 2.7 AMP

ELEMENT EVALUATION¹ HIGH RELIABILITY /883 (CLASS H)

	QML	
	CLASS H /883	
COMPONENT-LEVEL TEST PERFORMED	M/S ²	Р ³
Element Electrical		
Visual		
Internal Visual		
Final Electrical		
Wire Bond Evaluation		

Notes

1. Element evaluation does not apply to standard and /ES product.

2. M/S = Active components (microcircuit and semiconductor die).

 P = Passive components, Class H element evaluation. Not applicable to standard and /ES element evaluation.

TABLE 7: ELEMENT EVALUATION

28 VOLT INPUT – 2.7 AMP

ENVIRONMENTAL SCREENING HIGH RELIABILITY STANDARD, /ES AND /883 (CLASS H)

	NON-QML ¹		QML ²
TEST PERFORMED	Standard	/ES	CLASS H /883
Pre-cap Inspection, Method 2017, 2032			
Temperature Cycle (10 times)			
Method 1010, Cond. C, -65°C to +150°C, ambient			
Method 1010, Cond. B, -55°C to +125°C, ambient			
Constant Acceleration			
Method 2001, 3000 g			
Method 2001, 500 g			
PIND, Test Method 2020, Cond. A			∎ 3
Burn-in Method 1015, +125°C case, typical ⁴			
96 hours			
160 hours			
Final Electrical Test, MIL-PRF-38534, Group A,			
Subgroups 1 through 6, -55°C, +25°C, +125°C case			
Subgroups 1 and 4, +25°C case			
Hermeticity Test			
Gross Leak, Cond. C1, fluorocarbon			
Fine Leak, Cond. A ₂ , helium			
Gross Leak, Dip			
Final visual inspection, Method 2009			

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

1. Standard and ES are non-QML products and may not meet all of the requirements of MIL-PRF-38534.

2. All processes are QML qualified and performed by certified operators.

3. Not required by DLA but performed to assure product quality.

4. Burn-in temperature designed to bring the case temperature to +125°C minimum.

Burn-in is a powered test.

TABLE 8: ENVIRONMENTAL SCREENING

